Best Antimicrobials for *Staphylococcus aureus* Bacteremia

I. Methicillin Susceptible *Staph aureus* (MSSA)

A. *In vitro* - Anti-Staphylococcal β-lactams (Oxacillin, Nafcillin, Cefazolin) are more active

B. Clinical Trials

 - Prospective, multicenter, observational study from 1994-1996
 - Pts identified by +BCx w/ staph → enrolled → observed (primary MD chose abx)
 - FU BCx drawn at the discretion of primary MD
 - Follow-up – 6 months for bacteremia, 3 years for endocarditis
 - Results
 - Bacteriologic Failure (persistent bacteremia >7 days &/or relapse)
 - Nafcillin – 0% failure (0/18)
 - Vancomycin – 19% failure (13/70)
 - Vancomycin predisposed to relapse on multivariate analysis (p < 0.048)

 - Cefazolin vs Vancomycin for MSSA in Dialysis Dependent Patients
 - treatment failures – Vancomycin (31%), Cefazolin (13%) – p .02

 - Matched Case Control Study
 - 27 vancomycin patients, 54 β-lactam patients (2:1 ratio)
 - Controls (β-lactam group) were matched using a complex matching system
 - A little more endocarditis in vanc arm (p 0.04)
 - All of the following were worse in patients who received vancomycin compared to β-lactams:
 - Overall deaths (41% vs 15% -- p 0.03)
 - *Staph aureus* related deaths (37% vs 11% -- p 0.006)
 - Cure rate (59% w/ vanc, 82% w/ β-lactams – p 0.05)
 - Conclusion - **Vancomycin is inferior to β-lactams for treatment of MSSA Bacteremia**

C. Oxacillin 12 gram continuous infusion is likely similar to 2 grams every 4 hours

II. Methicillin Resistant *Staph aureus* (MRSA)

B. Vancomycin

- Class - Glycopeptide
- Mainstay for the past 40 years
- Slowly bactericidal - Not as potent as Beta-lactams (*in vitro or in vivo*)

1. Dose
 - 15mg/kg IV BID
 - For a 70kg patient, this is 1 gram BID
 - Consider higher doses in younger patients (<40 yrs old) as vancomycin is cleared rapidly in these patients
 - **Loading dose of 25-30 mg/kg** can be given
 - Continuous Infusion (30 mg/kg q day)
 - May reach goal levels faster
 - Similar efficacy and safety……probably

2. Goal troughs
 - **IDSA guidelines**
 - Serious infections (bacteremia, endocarditis, osteomyelitis, HAP, meningitis) - 15-20
 - Other infections - Keep trough over 10 to avoid development of resistance
- Endocarditis Guidelines – 10-15
- Continuous infusion – 20-30

3. Minimum Inhibitory Concentrations (MIC)
- ≥16 — resistant (VRSA) — altered binding site due to VanA gene (usually donated from VRE)
 - 11 cases reported in USA
- 4-8 — intermediate (VISA) — thicker cell wall
- ≤ 2 — Susceptible
 - MIC 0.5 — 22% failure rate
 - MIC 1 — 27% failure rate
 - MIC 2 — 51% failure rate

- Prospective, cohort study, Evaluation was based on 86 patients (bacteremia, pneumonia).
- Final response based on target trough achievement (trough 15-20).
 - MIC ≤ 1 — 85% response (when target trough is reached)
 - MIC = 2 — 62% response (when target trough is reached) – p=.02

5. Nephrotoxicity?
- Primarily noted when vancomycin is used with concomitant nephrotoxins
- If trough levels go too high, then may have some nephrotoxicity
- Large daptomycin trial (see below) – vanc troughs of 15-20, but still had similar rates of
 nephrotoxicity compared to β-lactams

C. Daptomycin
1. Background
- Spectrum – gram positives only
- Initially approved in 2003 for SSTI - Dose for SSTI – 4mg/kg qday
- Later, approved for bacteremia and right sided endocarditis - Dose – 6 mg/kg
- Also active against VRE - Dose – 8-10 mg/kg
- Failed pneumonia trial vs ceftriaxone - Surfactant likely binds daptomycin - do not use
- As Vanc MIC rises, so will Dapto’s MIC frequently (due to thick cell wall)
- Side effects - elevated CK - Consider stopping statins
- Time-Kill curves suggest that Daptomycin is one of the most active agents against MRSA in vitro

- Open-label, Randomized Trial from 2002-2005.
- 235 patients
 - Inclusion criteria – Age >18, at least one positive blood culture for Staph aureus
 - Exclusion criteria – CrCl<30, osteomyelitis, polymicrobial bacteremia, pneumonia.
- Two arms – 14-42 days
 - Daptomycin 6mg/kg
 - Usual therapy
 - MSSA – oxacillin plus gentamicin (4 days)
 - MRSA – vancomycin plus gentamicin (4 days)
 - Vancomycin was adjusted based on levels
- All patients underwent TEE within five days of starting antibiotics
- Cardiologist was blinded to study meds
- Patients were followed until 42 days after the end of therapy
- Failure
 - Clinical (ongoing symptoms) or Death
 - Microbiological (persistent bacteremia or relapse)
Receipt of effective nonstudy antibiotics
- Failure to obtain final blood culture
- Discontinuation of study medication
- Outcomes after 42 days of therapy
 - Overall success rate
 - Daptomycin 44.2%, STD 41.7% (Oxacillin 45%, Vanc 38%)
 - Vs MSSA – Dapto 44%, STD 48% (p=0.74)
 - Vs MRSA – Dapto 44%, STD 32% (p=0.28)
- Success was similar according to diagnosis (bacteremia, endocarditis, etc)
- Reasons for Failure
 - Daptomycin – microbiologic failure (15.8% vs 9.6% (p=0.17))
 - 7 of 23 Daptomycin failures resulted in rising S aureus MICs
 - Standard Therapy - adverse events (14.8% vs 6.7% (p=0.06))
 - Likely due to 4 days of Gentamicin
- Safety
 - Daptomycin - Elevated CK
 - 25% had elevated CK levels
 - 6.7% were “clinically significant”
 - 2.5% withdrew due to elevated CK
 - Standard therapy
 - Significant renal impairment – 18% vs 6.7%
 - (Ox – 18%, Vanc 20%)
 - Worsening creatinine clearance 47% vs 20%
 - Likely due to short course of gentamicin
- Conclusions
 - Daptomycin is noninferior to standard care (Oxacillin + Gent OR Vanc + Gent) for *Staph aureus* bacteremia and right sided endocarditis.
 - When Daptomycin fails, it is frequently due to microbiologic failure and some resistance. Need drainage!

D. Telavancin

1. Background
 - Semisynthetic derivative of Vancomycin
 - FDA approved on 9/11/2010 for cSSTI
 - Rapidly bactericidal in vitro – Theoretically, should be similar (or better) than vanc
 - Two mechanisms of action
 - Inhibits cell wall synthesis (similar to vanc)
 - Disrupts cell membrane & alters permeability
 - Complicated Skin & Soft Tissue Infections - Non inferior to vancomcyin
 - Nosocomial Pneumonia
 - Higher cure rates w/ monomicrobial S aureus infections w/ vancomycin MIC >= 1 (87% vs 74% -- p=0.03)
 - Overall cure and MRSA cure rates were similar
 - FDA needs more studies for nosocomial pneumonia
 - Unpublished – data on file w/ company
 - No bacteremia trials, No FDA indication for bacteremia
 - Safety
 - May be teratogenic
 - More nephrotoxicity than Vanc
- Red Man Syndrome
- QTc prolongation
 - Interference w/ coagulation tests (Does not interfere w/ coagulation
 - Draw INR, PTT prior to next dose

E. Ceftaroline
1. Fifth Generation Cephalosporin - +MRSA activity
 - Antimicrobial spectrum is similar to cefotaxime + MRSA (misses pseudomonas)
 - FDA approved for cSSTI and Pneumonia (including MRSA infections)
 - First β-lactam with activity vs MRSA
 - May be superior to vanc, if you extrapolate oxacillin/cefazolin data
 - However, ceftaroline has not he demonstrated to be superior to vanc yet
2. Bacteremia studies - minimal
 - Retrospective, salvage therapy in six patients with MRSA bacteremia
 - All six patients rapidly cleared bacteremia on ceftaroline
3. Not enough data to support routine use for MRSA bacteremia --- could be considered for salvage therapy
 - Ceftaroline was not FDA approved when the ISDA MRSA guidelines came out - thus, not listed.

F. Linezolid
1. Background
 - Class – oxazolidinone
 - Bacteriostatic vs S aureus
 - Near 100% bioavailability (IV=PO)
 - FDA approved in 2000, not approved for bacteremia
 - Spectrum – gram positives only (Staph aureus, enterococcus, strep pneumoniae, streptococci)
 - Side effects
 - Bone Marrow suppression
 - Especially thrombocytopenia
 - Usually starts after 14 days
 - Usually reversible
 - Neuropathy (usually after 28 days) – Irreversible - Peripheral, Optic
 - Serotonin Syndrome - Usually when combined w/ SSRIs
 - Retrospective study of persistent Staph aureus bacteremia (≥ 7 days) using salvage therapy
 - Showed a great advantage for Linezolid (microbiologic response, mortality), but many flaws
 - Vancomycin arm – more endocarditis, brain complications, and low vanc troughs

G. Quinupristin-Dalfopristin (Synercid)
1. Background
 - Two streptogramins that bind bacterial ribosome, Approved in 1990’s
 - If clindamycin is susceptible, then this drug is bactericidal. In vitro – not too shabby
 - Very expensive ($427 per day at UH)
 - Many adverse effects – especially myalgias and thrombophlebitis ; need central line
 - Never shown to be superior to vanc

H. Tigecycline
1. Background
 - Class – Glycylcycline (tetracycline derivative)
 - Broad spectrum antibiotic -- Gm+, Gm-, anaerobes, No pseudomonas
 - Theoretical concerns - Low serum levels, bacteriostatic
 - Not easily tolerated – approx 30% of patients will have nausea and vomiting
- FDA Drug Safety Communication 2010 - Increased risk of death w/ tigecycline compared to other antibiotics used to treat similar infections.

 - Retrospective, subgroup analysis of 8 studies – Bacteremia patients
 - Higher rates of **persistent bacteremia** (>24 hrs) vs comparator antibiotic (9.8% vs 1.3%).

I. Trimethoprim/Sulfamethoxazole
 1. Background
 - Very low rate of resistance - <2%
 - **Need high dose for Staph aureus – 2 tabs BID**
 - Excellent oral bioavailability, Bactericidal *in vitro*, best activity vs MRSA out of all oral abx
 - Adverse reactions in 6-8% of pts

 - Prospective, randomized, double-blind in IVDU
 - 1982-1985, Detroit, 101 pts
 - Doses
 - T/S - 320mg (TMP component) BID (equivalent to 2 DS PO BID)
 - Vanc – 1g IV BID - Vanc levels were adjusted by unblinded pharmacist
 - 47% w/ MRSA, 65% w/ bacteremia, 25% w/ R sided endocarditis
 - Cure rate – Vanc 98%, T/S 86% (p 0.014)
 - ALL treatment failures were in MSSA group
 - R endocarditis – Vanc 92% (7 of 11 pts), T/S 64% (9/12) – p 0.095
 - Non-endocarditis – Vanc 100%, T/S 94% - p 0.06
 - T/S group had +BCx for 2 more days than vanc group (P 0.10)
 - No organisms developed resistance on therapy
 - Conclusion
 – it’s never good when you lose to vancomycin.
 - However, T/S is the most active oral agent for MRSA and has a role in lesser infections

III. Adjuncts (used with β-lactam or vancomycin)
 1. Gentamicin
 A. Background
 - Survey of ID physicians in 2006 showed that many favor the addition of gentamicin to achieve earlier clearance of blood cultures.
 - In vitro, the addition of gentamicin to either antistaphylococcal penicillins or vancomycin resulted in a more rapid bactericidal activity.
 B. Sande MA, Courtney KB. J Lab Clin Med 1976; 88:118-24
 - Patients with predominantly left-sided, MSSA endocarditis.
 - Patients were given 6 wks of nafcillin with or without low dose gentamicin for the first two wks.
 - Significant renal impairment in gent arm
 - Bacteremia was cleared one day sooner with gent
 - Morbidity and mortality were not affected
 - Conclusion – Give gentamicin for the first 3-5 days only --- this has now fallen out of favor
 C. Cosgrove, Sara et al. Clin Infec Dis. 2009;48; 713-721. - Review of large Daptomycin trial (see above)
 - Median Gentamicin exposure - 4 days, 2-3mg/kg per day
 - Adverse renal event
 - Daptomycin6. 7%
 - Standard therapy – 18%
- Vancomycin 19%
- Nafcillin 17%
- Higher in diabetics and age > 65
- Clinically sig decrease in CrCl – 22% vs 8% (p .005)
- Sustained 50% decrease in CrCl – 6% vs 0% (p .02)
- Sustained 25% decrease in CrCl – 21% vs 9% (p .02)
- No patients required long-term hemodialysis

Conclusion
- Low-dose gentamicin appears to cause significant renal dysfunction.
- Gentamicin synergy should not be used on a routine basis

2. Rifampin
 A. Background
 - Highly active against most Staph aureus strains (97%)
 - Excellent tissue penetration, active in biofilms
 - Resistance can develop rapidly – never use as monotherapy
 - One step mutation in target site
 - Resistance can even develop w/ combination therapy (21% in one study)
 - Many drug interactions, elevated LFTs
 - Cohort study, 42 patients with endocarditis
 - (Vancomycin) VS (Vancomycin + Rifampin – 600mg once a day)
 - Clinical outcome was identical
 - Duration of bacteremia was two days longer in the rifampin arm (9 days vs 7 days)

3. Levofoxacin
 - Never use quinolones as monotherapy for serious Staph aureus infections – resistance can develop
 - Prospective, randomized trial from 2000-2002 in Finland, 381 patients
 - No change in mortality, time to defervescence, # of complications, or decrease in CRP.

 A. Workup
 - All patients with bacteremia need echocardiogram (TEE preferred over TTE)
 - Serial blood cultures until negative
 - Assess for source of infection and possible metastatic infection sites
 B. MRSA Bacteremia &/or Endocarditis
 - Recommended - vancomycin or daptomycin
 - Not recommended for routine bacteremia - addition of gentamicin or rifampin
 - Persistent bacteremia on therapy
 - Daptomycin (10 mg/kg) in combination with either gentamicin, rifampin, linezolid, or a β-lactam.
 - Search for source of infection and debride as needed
 - Ceftaroline was approved after these guidelines came out - utility in salvage therapy?
 C. Duration
 - Uncomplicated bacteremia - 2 weeks
 - Definition - no endocarditis, no implanted prosthesis, negative blood cultures at 2-4 days, no metastatic infections, defervescence within 72 hours of starting therapy
 - Complicated bacteremia - 4-6 weeks
 - Definition - NOT uncomplicated as above