Low Back Pain

Chris Burnett, MD
Scott & White Hospital
Department of Anesthesiology

Family Practice Conference 2012
Low Back Pain

- Most common source of pain and disability in modern society
- It is estimated that back pain afflicts over 31 million Americans chronically and is the number one cause of activity limitation in young adults
- Americans spend at least $50 billion each year on back pain treatment
- Within a given year, up to 50% of U.S. adults suffer from back pain
- Back pain is one of the most common reasons for missed work
- Back pain is the second most common reason for visits to the doctor’s office, outnumbered only by upper-respiratory infections.
- Experts estimate that as many as 80% of the population will experience a back problem at some time in our lives
Common Causes of Back Pain

- Myofascial Pain Syndrome
- Facet Joint Syndrome
- Lumbar Intervertebral Disc Disease
- Lumbar Herniated Disc
 - Lumbar Radicular Pain
- Lumbar Spinal Stenosis
- Failed Back Surgery Syndrome
- Sacroiliac Joint Dysfunction
- Lumbar Compression Fractures
Myofascial Pain Syndrome

- **Definition**
 - A painful regional syndrome characterized by the presence of an active trigger point (TrP) in a skeletal muscle

- **Symptoms**
 - Localized pain
 - Muscle spasm

- **Exam Findings**
 - Tender spot (TrP) in an affected muscle
 - Referral of pain to a zone of reference
 - Reproduction of the patient’s usual pain with palpation
Myofascial Pain Syndrome

- **Imaging Studies**
 - No significant findings

- **Conservative Treatment Options**
 - Cold spray over the TrP
 - Massage
 - Stretching
 - Physical Therapy
 - Medications
 - Muscle Relaxants
 - Anti-inflammatories (NSAIDs)
 - Tramadol
Myofascial Pain Syndrome

- Interventional Management
 - Local injection
 - Dry Needling
 - Botox Injection
Lumbar Facet Syndrome

- **Anatomy**
 - Lumbar Facet Joints (LFJs) are synovial joints with cartilaginous articular surfaces, synovial membranes, and fibrous capsule
 - Located dorsally at the junction of the lamina, pedicle, and base of the transverse process
Lumbar Facet Syndrome

- **Anatomy**
 - Link the posterior aspect of the spine
 - Each joint is comprised of two articular processes, superior and inferior, stemming from the corresponding vertebrae
Lumbar Facet Syndrome

- **Anatomy**
 - Each facet joint receives innervation from the medial branch of the posterior primary ramus at the same vertebral level and from the vertebral level above.
 - The fibrous capsule and the synovium of the facet joints are richly innervated by nociceptive fibers.
Lumbar Facet Syndrome

Definition
- Pain arising from the lumbar facet joints
- May affect up to 40% of LBP sufferers

Terminology
- Very little standardization in nomenclature for the condition
- Often used interchangeably with lumbar spondylosis which refers to nonspecific degeneration of the spine due to aging
Pathophysiology

- Largely unknown, but lesions that can cause LFS:
 - Degenerative arthritic changes
 - Systemic inflammatory arthritides (RA & AS)
 - Microtrauma
 - Joint subluxation
 - Villonodular synovitis
 - Synovial cysts
 - Infections
 - Meniscoid and synovial entrapment
Lumbar Facet Syndrome

- **Symptoms**
 - LBP
 - Referred pain to groin, hip, posterior thigh—rarely below the knee
 - Pain exacerbated by twisting or arching movements, prolonged sitting or standing
 - Pain relieved by forward flexion, rest, and walking
 - Pain on back extension
Physical Exam Findings
- Localized tenderness over facet joints/paraspinous muscles
- Positive Kemp’s test
- No neurologic deficits
- Normal straight leg raise

Imaging Studies
- No imaging findings reliably predict facet joints as source of pain
- Joints can appear hypertrophic or arthritic on MRI or CT
Lumbar Facet Syndrome

- Diagnostic Facet Injections
 - The only accepted standard for diagnosing pain originating from the LFJs
 - Analgesic response to targeted, low-volume (less than 2mL), local anesthetic injections
 - Intra-articular injections
 - Placement of needle tip directly into joint
 - Medial Branch Blocks (MBBs)
 - Injecting local anesthetic at the junction of the transverse process (TP) and the superior articular process (SAP) ~ “the eye of the scottie dog”
Facet Innervation
Lumbar Facet Syndrome

- Interventional Management
 - Therapeutic injection of local anesthetic and steroid
 - Facet denervation
 - Radiofrequency ablation (RFA) is most commonly used
 - Cryoablation
Lumbar Intervertebral Disc Disease

- **Normal Disc Physiology**
 - **Vascularization**
 - Largest avascular structure in the body
 - Metabolic requirements are met by diffusion to and from the capillary plexuses in the adjacent vertebral bodies
 - **Innervation**
 - Innervated by plexuses along the anterior and posterior longitudinal ligaments
 - Nerves are mostly mechanoreceptors
 - Rich autonomic connections, which may contribute to hyperalgesia in a chronically painful disc
 - **Lacks scavenger cells**
 - Degradation products accumulate over time, which can alter normal cell matrix interactions
Lumbar Intervertebral Disc Disease

- Normal Disc Physiology
 - Compartments of the IVD
 - Nucleus Pulposus (NP)
 - Clusters of chondrocyte-like cells
 - Jelly-like matrix
 - High concentration of water and proteoglycans
 - Annulus Fibrosus (AF)
 - Fibrocyte-like cells
 - Matrix is high in collagen that is arranged as interlacing lamellae that attach to vertebral bodies
Lumbar Intervertebral Disc Disease

- Internal Disc Disruption
- Herniated Lumbar Disc
 - Protruded disc
 - Disc extrusion
 - Disc sequestration
Definition

- Pain originating from the disc itself
- Also referred to as:
 - Degenerative Disc Disease
 - Discogenic pain
Internal Disc Disruption

- Degenerative Disc Disease (DDD)
 - Degeneration of the IVD along with direct annular compression leads to annular failure and development of fissures that spread outward toward the periphery
 - Common in older asymptomatic individuals
 - Regarded as a physiologic consequence of aging
Internal Disc Disruption

- Degenerative Disc Disease (DDD)
 - Predisposing Factors for early DDD
 - Diminished blood supply
 - Genetic predisposition
 - Increased mechanical stress
 - End plate injury
 - Vascular disease
 - Obesity
Degenerative Disc Disease (DDD)

Changes in the disc dynamics increase stress on adjacent structures and may lead to the following:

- Sclerosis
- Hypertrophic new bone formation in adjacent vertebral bodies
- Accelerated degeneration of adjacent discs
- Hypertrophy & arthritis of the facet joints
- Sacroiliac joint dysfunction
- Paraspinal myofascial syndrome
- Stenotic changes in spinal canal causing nerve root (NR) and spinal cord compressive symptoms
Internal Disc Disruption (IDD)

Pathology of IDD

- Patients with pain on discographic evaluation show zones of vascularized granulation tissue that extends from the NP to the outer AF
- These zones correlate with annular tears seen on post-discography CT scans and high intensity zones seen on MRI
Internal Disc Disruption (IDD)

Pathology of IDD (cont.)

- Two types of nerve fibers are found along the zones of granulation tissues
 - Vasoregulatory fibers
 - Nociceptors that are high in substance P, and penetrate deep into the inner AF and NP
- These discs produce significant amounts of pro-inflammatory mediators, which sensitize the nociceptors and maintain a state of hyperalgesia within the affected disc
Internal Disc Disruption (IDD)

Pathology of IDD (cont.)

- Hyperalgesic discs cause chronic pain, worse with mechanical stress and produce a painful response with minimal stimulation on discography

Clinical Findings

- Acute or chronic pain in low back or buttocks
- Often precipitated by a torsion injury to low back and exacerbated by axial loading (occurs with prolonged sitting or standing)
- Pain can radiate to lower extremities
Internal Disc Disruption (IDD)

Imaging Studies

- Spinal images show degenerative disc changes in many asymptomatic individuals
 - Highly sensitive, but poorly specific in diagnosis
- MRI Images
 - Shows a loss of signal intensity on T2-weighted MR images ~ signifies desiccation of NP
 - High intensity zone in the posterior annulus (most prominent on T1-weighted MRI image) indicates the presence of a tear in the posterior annulus and correlates closely with pathologic lesions of IDD
Internal Disc Disruption (IDD)

- Imaging Studies
 - Discogram
 - Procedure in which contrast is injection into the NP
 - Currently the only accepted means for diagnosing IDD
 - Findings in IDD
 - Painful response to disc provocation, in the presence of a non-painful response at another disc level
 - Must be coupled with morphologic abnormalities seen on post-discography CT scan (tears extending to the outer one third of the AF)
Internal Disc Disruption

Discogram ~ AP View

Discogram ~ Lateral View
Internal Disc Disruption

Treatments

- Interventional
 - Intradiscal electrothermal therapy
 - Involves thermal lesioning of the posterior disc annulus by a percutaneously placed heating coil
 - Hypothesized to shrink annular collagen and coagulate nociceptive fibers
Internal Disc Disruption

› Surgical
 • Removal of painful disc and arthrodesis of the adjacent vertebral bodies (spinal fusion) should theoretically relieve the pain
 • Results are mixed and doubts have been raised about efficacy
Internal Disc Disruption
Terminology

- A bulging disc occurs when the tough outer fibers of the spinal disc weaken and stretch allowing the “jelly center” of the disc to “bulge” outward
 - Generally considered the first step toward a more serious problem called a Herniated Disc
- A herniated disc is similar to a disc bulge except that the outer layers of the disc actually weaken to the point of tearing
 - Misleadingly called a “slipped disc”
 - A tear in the annulus fibrosus of a disc allows the nucleus pulposus to bulge beyond the edges of the adjacent vertebral bodies
 - Almost always postero-lateral in nature owing to the presence of the posterior longitudinal ligament in the spinal canal
 - Tears can result in the release of inflammatory chemical mediators which may directly cause severe pain, even in the absence of nerve root compression
 - This is the rationale for the use of anti-inflammatory treatments for pain secondary to “chemical radiculitis”
Herniated Lumbar Disc

- Terminology
 - Protruded disc
 - The base is the widest portion of the herniated material
 - Disc extrusion
 - The neck is the narrowest portion of the herniated material
 - Disc sequestration
 - Type of disc extrusion wherein no continuity exists between the herniated material and the parent disc
Herniated Lumbar Disc

Disc Protrusion
Herniated Lumbar Disc

- Pathophysiology
 - Most common cause of Lumbar Radicular Syndrome
 - Mechanical compression of the nerve roots (NRs) by the herniated material is assumed to be the primary factor inducing radicular symptoms
 - The presence of inflammatory mediators in the herniated disc (HD) may also contribute to radicular symptoms
Herniated Lumbar Disc

- Imaging/Diagnostic Studies
 - MRI
 - CT Scan
 - Discography
 - Useful to assess the size and location of the HD, as well as the integrity of the disc annulus
Herniated Lumbar Disc

- Conservative treatment
 - Activity Restrictions
 - Bracing - limited evidence
 - Traction
 - Acupuncture
 - Chiropractic manipulations
 - Massage
 - Magnets
 - Electrical nerve stimulation
 - Ultrasound
 - Physical Therapy
Herniated Lumbar Disc

- **Conservative Treatment**
 - Medications
 - NSAIDs
 - Opioids
 - Muscle relaxants
 - Neuroleptics
 - Systemic corticosteroids—little literature to support
Herniated Lumbar Disc

- Interventional Management
 - Interventional Treatment
 - Epidural Steroid Injections (ESIs)
Favorable Outcome Predictors for Conservative Treatment

- Negative crossed straight leg raise
- Absence of leg pain on extension of spine
- Return of neurologic function within 12 weeks of onset
- Absence of stenosis
- Favorable response to epidural steroid injections
- Patient is motivated, physically fit, has a normal psychological profile, no worker’s comp claims, and has 12 years of education
Herniated Lumbar Disc

※ Surgical Options
 › Surgery is common, but little high-quality evidence supports this practice
 › The main benefits of surgery appears to be a more rapid resolution of disabling pain
Herniated Lumbar Disc

- Surgical Indicators
 - Cauda Equina Syndrome (CES)
 - Progressive motor deficits
 - Intractable Pain
 - Poor response to conservative therapy
Lumbar Radicular Syndrome

Definition

- A constellation of clinical signs & symptoms of variable etiology secondary to pathology or dysfunction of the NR or dorsal root ganglia (DRG)

Terminology

- Frequently referred to inappropriately as:
 - *Lumbar radiculopathy* (implies objective signs of NR damage)
 - *Lumbar radiculitis* (implies inflammatory processes being solely responsible)
 - *Lumbar radicular pain* (implies pain is the predominant symptom)
 - *Sciatica* (implies pain of only the sciatic nerve)
Lumbar Radicular Syndrome

- **Prevalence**
 - 12% to 40% of pts with LBP have radicular symptoms

- **Etiology**
 - Pathologic processes that affect the sensory spinal nerve roots (SSNRs) and the DRGs
 - Lesions of the IVD
 - Degenerative spinal disorders
 - Herniated disc
 - Neoplastic lesions
 - Infectious lesions
 - Traumatic lesions
 - Metabolic lesions
 - Vascular lesions
“Red Flags” that require further work-up

Cauda Equina Syndrome

- Definition
 - Acute compression of the spinal NRs comprising the cauda equina
- Prevalance
 - 4/10,000 patients with LBP and LRS
- Causes
 - Massive midline disc herniation
 - Smaller disc herniation in a stenotic spine
 - Spinal metastases
 - Spinal hematoma
 - Epidural abscess
 - Traumatic compression
 - Acute transverse myelitis
 - Abdominal aortic dissection
“Red Flags” that require further work-up

- Cauda Equina Syndrome

 - Symptoms
 - Often present within 24° of onset
 - Bilateral radicular pain, although one leg is usually worse than the other
 - Weakness in both feet
 - Gait disturbances
 - Abdominal discomfort related to urinary retention, may be followed by urinary incontinence
Lumbar Radicular Syndrome

- “Red Flags” that require further work-up
 - Cauda Equina Syndrome
 - Objective Signs
 - Motor and sensory deficits
 - Diminished reflexes
 - Positive SLR in both lower extremities
 - Diminished sensation in buttocks and perineum*
 - Diagnosis
 - Made with MRI
 - Treatment
 - High-dose IV steroids
 - Urgent decompressive surgery to reduce permanent disability
Lumbar Radicular Syndrome

- Clinical Features of LRS
 - Pain
 - Travels along a narrow band
 - Has a sharp, shooting, and lancinating quality
 - Paresthesias, numbness, and weakness in the territory of the involved NR
 - Gait disturbances
 - Loss of sensation
 - Reduced muscle strength
 - Diminished reflexes
Lumbar Radicular Syndrome

Dermatome Map of the Body

Levels of principal dermatomes

- **C5** Clavicles
- **C6, 7, 8** Lateral parts of upper limbs
- **C7, T1** Medial sides of upper limbs
- **T1** Spine
- **C8** Nipples
- **T4** Level of nipples

- **T10** Level of umbilicus
- **T12** Inguinal or groin regions
- **L1, 2, 3, 4** Anterior and inner surfaces of lower limbs
- **L4, 5, S1** Foot
- **L5, S1** Medical side of great toe
- **S1, 2, 3** Posterior and outer surfaces of lower limbs
- **S2, 3, 4** Lateral margin of foot and little toe
- **S3** Penis
Clinical Features of various NR involvements

- **S1 NR**
 - Pain, paresthesia, and numbness of the posterior thigh, calf, and plantar surface of the foot
 - Difficulty with toe walking
 - Weakness of plantar flexion
 - Loss of plantar reflex

- **L5 NR**
 - Similar to S1 NR involvement
 - Pain also involves buttock, anterolateral leg, dorsal foot, and great toe
 - Possible difficulty in heel walking
 - Weakness of ankle and toe extension
Lumbar Radicular Syndrome

- Clinical Features of various NR involvements
 - L4 NR
 - Pain in anterior thigh, knee, and upper-medial leg
 - Weakness of knee extension
 - Diminished patellar tendon reflex
 - L3 and L2 NR
 - Pain and sensory alterations in the groin and inner thigh
 - Lower Sacral NR
 - Decreased sensation in buttock & perineal areas
 - Autonomic dysfunction (bowel & bladder dysfunction)
 - Sexual dysfunction (loss of erection & vaginal anesthesia)
Clinical Tests

- Straight-leg raise test (SLR)
 - Positive (pain in the radicular distribution)
 - Suggests radicular pathology of lower lumber NR (L4, L5, & S1)

- SLR and ankle dorsiflexion of the extended lower extremity
 - Causes traction of the lower lumber NR by pulling them caudally
Lumbar Radicular Syndrome

Clinical Tests

› Crossed straight leg raise (X-SLR)
 • Raising the asymptomatic leg reproduces pain
 • More specific for lumbar NR irritation than SLR
Clinical Tests

- Femoral stretch test
 - Bending the knee and extending the hip in the prone position
 - Places the L2 and L3 NR under tension
Lumbar Radicular Syndrome

- **Imaging Studies**
 - **MRI**
 - Gold Standard in determining etiology of LRS
 - Offers best resolution of spinal canal, spinal cord, neural foramina, NRs, and disc spaces
 - Allows evaluation of entire spine
 - A contrast-enhanced MRI is indicated in pts with previous spine surgery to differentiate between scar tissue and recurrent disc herniation
 - Contraindicated in patients with pacemakers, mechanical heart valves, aneurysm clips, and intraocular foreign bodies
Imaging Studies

- Computed Tomography (CT)
 - Superior to MRI in evaluating bony details of the spine, particularly facet joints and lateral recesses
 - When combined with myelography, results are comparable to MRI in diagnosing spinal canal lesions
 - CT with myelography can be used when MRI is contraindicated
 - CT without myelography cannot distinguish between HD and other intradural lesions
Lumbar Radicular Syndrome

- Imaging Studies
 - Plain radiography
 - Flexion and extension films reveal segmental instability as a source of pain
 - Spondylolisthesis- anterior displacement of a vertebra or the vertebral column in relation to the vertebrae below
Spondylolisthesis

Grades of spondylolisthesis:

- Normal spine
- Grade 1: <25% slippage
- Grade 2: 25-50% slippage
- Grade 3: 50-75% slippage
- Grade 4: >75% slippage
Spondylolisthesis
Electrodiagnostic Studies

Electromyography (EMG)/Nerve Conduction Studies (NCS)

- Have high diagnostic specificity
- Useful in distinguishing LRS from symptoms of peripheral neuropathy
- Do NOT give information regarding the etiology of LRS and correlate poorly with anatomical level of radicular lesions
Other Diagnostic Tests

- Bone Scan
- CBC
- UA
- Erythrocyte sedimentation rate
- C-reactive protein
- Rheumatoid factor
- Antinuclear antibodies
- HLA-B27 antigen
Lumbar Radicular Syndrome

- Treatment
 - Medications
 - NSAIDS
 - Opioids
 - Lyrica
 - Neurontin
 - Epidural Steroid Injections
 - Spinal Cord Stimulation
 - Surgical Intervention
Lumbar Spinal Stenosis

Definition

› A clinical syndrome of neurogenic claudication and/or radicular pain secondary to the narrowing of the spinal or NR canal and compression of its neural elements
› Classified into congenital and acquired, with the degenerative variety of the acquired type being most prevalent
› Anatomical Classification
 • Central canal stenosis or central stenosis
 • Lateral recess
 • Neural foraminal stenosis or lateral stenosis
Lumbar Spinal Stenosis
Lumbar Spinal Stenosis

Spinal stenosis is a narrowing of the spinal canal.

Normal

Stenosis

Stenosis

Top view after stenosis

Normal

Stenosis

Spinal canal
Lumbar Spinal Stenosis

- Pathophysiology
 - Typical lesions seen in LSS:
 - IVD degeneration with bulging and loss of disc height
 - Facet joint hypertrophy
 - Thickening and redundancy of the ligamentum flavum
 - Osteophyte formation
Lumbar Spinal Stenosis

- **Pathophysiology**
 - Central stenosis compresses the NRs of the cauda equina
 - Lateral stenosis compresses the exiting spinal NRs
 - L5 NR is most commonly involved (75%), followed by L4 (15%), L3 (5.3%), L2 (4%) NRs
 - Degenerative changes that result in spinal stenosis can also result in spinal instability and spinal deformities and can contribute to further spinal narrowing and deformity
Clinical Findings

› Neurogenic Claudication
 • Pain radiating to both lower extremities at the posterolateral aspect of the thighs and legs
 • Worse with walking and lumbar extension, relieved with sitting down
 • Pain often associated with numbness, heaviness, and/or weakness in the lower extremities
 • Must distinguish between vascular claudication (which is not relieved by walking in a flexed position)

› Radicular Pain
 • Unilateral radicular symptoms unrelated to activity reflect NR involvement
Clinical Findings

Axial Pain
- Unlikely symptom of LSS, more reflective of disc, facet joint or sacroiliac joint pathology

Other Clinical Signs
- Walking with a stooped forward gait
- Stooped posture with loss of lumbar lordosis and decrease lumbar extension
- SLR is infrequently positive due to slow onset of symptoms
- Decreased or absent Achilles reflex in about half of pts
Lumbar Spinal Stenosis

- Imaging Studies
 - MRI
 - Most commonly used to detect pathologic lesions of LSS
 - CT Scan
Conservation Treatment

- Medications
 - APAP
 - NSAIDs
 - Limit narcotic use to acute flare-ups

- Activity Modification
 - Avoid aggravating activities
 - Relative rest during acute-flare-ups

- Bracing
 - Lumbar binders may be helpful by reducing loads across the lumbar spine
 - Wear for only a short period of time to avoid deconditioning
Lumbar Spinal Stenosis

- **Conservative Treatment**
 - **Physical Therapy**
 - Flexion-based exercises increase the cross-sectional area of the spinal canal and improve microcirculation of the neural elements
 - Aquatic therapy is also useful
 - **Epidural Steroid Injections**
 - Effective especially in the short term
 - May provide symptomatic control of acute exacerbations of neurogenic claudication
 - Transforaminal ESIs are better suited for radicular symptoms secondary to LSS
Surgical Options

- Wide laminectomy at the stenotic levels is standard for surgical decompression
- Involves the removal of the spinal lamina and the ligamentum flavum, extending laterally from pedicle to pedicle
- Extensive removal of posterior spinal elements can result in spinal instability ~ this can be avoided by preserving the pars interarticularis and the lateral 50% portion of the facet joints
Lumbar Laminectomy

- Disc
- Spinal Cord
- Spinal Nerve

Back View

Top View

Removal of Lamina
Failed Back Surgery Syndrome

- **Definition**
 - Persistence or development of low back or leg pain following surgery of the lumbosacral spine

- **Prevalence**
 - Approximately 300,000 lumbosacral spine procedures are performed each year in the US
 - The incidence of Failed Back Surgery Syndrome (FBSS) is as high as 60%
Failed Back Surgery Syndrome

Reasons for FBSS

› Poor patient selection
› Surgery was not indicated or wrong procedure was performed
› Clear indication, but surgery did not correct original problem
› A complication from surgery (e.g. discitis)
› Recurrent disc herniation
› Secondary instability or degenerative changes
› Neural injury (arachnoiditis or epidural scarring)
› Intercurrent diagnosis, such as cancer
Failed Back Surgery Syndrome

Diagnostic Studies

- Gadolinium-enhanced MRI to r/o epidural fibrosis
- Myelogram to r/o arachnoiditis
- Bone Scan to r/o osteomyelitis
Failed Back Surgery Syndrome

- **Treatment**
 - Focuses on underlying cause
 - Can try nerve blocks, epidural corticosteroid injections, sacroiliac joint blocks, and facet blocks, depending on diagnosis of underlying cause
 - Epidural lysis of adhesions (Racz procedure)
 - Good results for FBSS patients with epidural fibrosis
Failed Back Surgery Syndrome

- **Treatment**
 - **Spinal Cord Stimulation**
 - May be of benefit in patients who have intractable pain, especially those for whom leg pain is the predominant complaint
Sacroiliac Joint Dysfunction

Definition

- Pain arising from abnormalities or injury of the sacroiliac joint (SIJ)

Epidemiology

- Sacroiliac Joint Dysfunction (SIJD) is thought to be the primary source of LBP in 10-25% of patients
- Common in women and pregnancy where the incidence is as high as 80%
Sacral Joint Dysfunction

- **Etiology**
 - SIJD may coexist with other conditions such as HD, IDD, FJS
 - Predisposing Factors
 - Trauma
 - Leg length discrepancy
 - Spinal deformity
 - Previous surgery
 - Disc pathology
 - Lumbar facet syndrome
Sacroiliac Joint Dysfunction

- **Etiology**
 - Predisposing Factors (cont.)
 - Pregnancy
 - Inflammation of the joint (ankylosing spondylitis)
 - Degenerative disease of the joint (osteoarthritis)
 - Metabolic dysfunction affecting the joint (gout)
 - Infection
 - Tumor

- **Imaging Studies**
 - Should be normal
Sacroiliac Joint Dysfunction

- Clinical Findings
 - C/O Pain
 - Originating in the SIJ and surrounding structures with greatest intensity in the region of the affected SIJ and medial buttock
 - May radiate to the groin, posterior thigh and occasionally below the knee joint
 - Tenderness over affected sacroiliac joint, most obvious in the prone position
 - Decreased joint mobility
 - Reproduction of pain when the affected SIJ is stressed
Sacroiliac Joint Dysfunction

- Clinical Tests for SIJD
 - Faber/Patrick Test (Left SIJD)
 - Patient is supine
 - Left leg, near the ankle, is placed in front of the right thigh above the knee
 - Physician places one hand over the medial aspect of the left knee
 - Positive test: pain over left SIJ region (also back, buttock, groin)
 - Test stress the SI and hip joints
Sacroiliac Joint Dysfunction

- Faber Patrick Test (Left SIJD)
Clinical Tests for SIJD

Gaenslen’s Test (Left SIJD)

- Patient is supine
- Left lower thigh and leg hang over the exam table
- Physician flexes right thigh and right knee (hip joint is maximally flexed)
- Physician presses downward over the left thigh (hip joint is hyperextended)
- Positive Test: pain in the left SIJ
- Test stresses both SIJs simultaneously by counter-rotation at the extreme ROM of the joint
- Test also stress the hip joint and stretches the femoral nerve
Sacroiliac Joint Dysfunction

- Gaenslen’s Test (Left SIJD)
Clinical Tests for SIJD

- Yeoman’s Test (Extension Test)
 - Patient is prone
 - Physician places one hand above the anterior knee and elevates it slightly
 - The other hand presses downward over the crest of the ilium
 - Positive test: pain over the posterior SIJ
 - Stress the SIJ, extends the lumbar spine, and stress the femoral nerve
 - Considered the most specific & reliable test
Sacroiliac Joint Dysfunction

- Yeoman’s Test (Extension Test)
Sacroiliac Joint Dysfunction

Diagnosis

- Fluoroscopic guided injection of SIJ
 - Gold standard for diagnosis of SIJ originating pain
 - Pain relief with local anesthetic injected into the most caudal aspect of the joint coincides with positive diagnosis
 - Poor technique, pain originating from structures immediately outside the SIJ, and extravasation of local anesthetic (especially anterior to sciatic nerve) may reduce validity of the diagnostic injection
Sacroiliac Joint Dysfunction

- **Treatment**
 - Physical therapy
 - Manipulation
 - Intra-articular steroid injections
 - Similar technique to diagnostic injection
 - Pain-relief is typically short term
Sacroiliac Joint Dysfunction

- Treatment
 - Radiofrequency denervation (RFD)
Vertebral Compression Fractures

- **Prevalence**
 - More than 700,000 osteoporotic vertebral compression fractures in the US each year
 - The rate of symptomatic compression fractures exceeds the frequency of symptomatic hip fractures in the elderly
Vertebral Compression Fractures

- Prevalence
 - Only 30% of vertebral fractures come to the attention of physicians, because lack of severe back pain in many patients does not trigger radiologic evaluation.
Vertebral Compression Fractures

- **Definition**
 - Fracture of the vertebral body which results in loss of normal vertebral body height
 - Often associated with trauma

- **Symptoms**
 - **Pain**
 - Deep ache exacerbated by changing position, twisting, or moving quickly
 - Worsens as the day progresses
 - Alleviated by lying flat
 - Very severe initially, often resulting in ER visit
 - Radicular symptoms suggest some other pathologic process (retropulsed fragment in the spinal canal or neural foramen compressing the neural elements)
 - Generally subsides over 1 week-10 days, becoming manageable with pain meds and restricted activity
Clinical Findings

- Rule out other causes of back pain (i.e. facet disease)
- Pain is elicited with palpation at the level or within one vertebral body inferior or superior to the fracture
- Thoracic compression fractures can result in radiation of pain around the chest wall
- Evaluate for neurologic function or presence of radicular pain
Vertebral Compression Fractures

- **Imaging**
 - **Plain x-rays**
 - Fracture typically visible on plain films and remote studies can be compared to evaluate fracture age and progression
 - **Bone scan**
 - Can help establish age of fractures
 - **MRI**
 - Can demonstrate recent fractures, eliciting evidence of bone marrow edema and inflammatory changes—better seen with fat saturation techniques
 - Also permits evaluation of other potential causes of pain (i.e. spondylosis or metastatic lesions)
Vertebral Compression Fractures
Vertebral Compression Fractures

- Treatment
 - Conservative
 - Limit Mobility
 - NSAIDs
 - Opioids
 - Bracing
Vertebral Compression Fractures

- Treatment
 - Interventional
 - Vertebroplasty
Vertebral Compression Fractures