THE NATURAL HISTORY OF RAY AMPUTATIONS

Third Annual Diabetic Foot Update
December 6, 2013

Gary M. Rothenberg, DPM, CDE, CWS
Director of Resident Training
Attending Podiatrist
Miami VA Healthcare System
PARTIAL RAY AMPUTATIONS

OBJECTIVES

WHO: Incidence / Demographics

WHAT: Causative factors

WHEN: Biomechanics

WHERE: Global differences

WHY: Predictors of outcome

HOW: Increase survivability
PARTIAL RAY AMPUTATIONS
MAGNITUDE OF THE PROBLEM

- 12 month re-amputation rates and associated costs - 1996 Medicare data
- 25.3% re-amputation among DM with toe level amp with >40% these cases resulted in trans-tibial level
- 22.7% mortality rate
- Average total cost $45,513
- Amputation rates are highest among:
 - Men
 - Racial and ethnic minorities
 - Older people
- Previous amputations are strong predictors of future amputations

PARTIAL RAY AMPUTATIONS INCIDENCE

United States
- African Americans 2 fold excess risk for LEA compared to Caucasians

United Kingdom
- African Caribbeans 1/3 lower risk compared with Europeans in London

Caribbean (Barbados)
- LEA rates for African Caribbeans overall similar to US

PARTIAL RAY AMPUTATIONS
INCIDENCE

- Abstracted medical records 1993 six metro areas: San Antonio, Corpus Christi, Brownsville, McAllen, Laredo, and Victoria
- 1,944 LEA during 1,228 hospitalizations
- 477 (45.7%) foot level
 - 305 males
 - Mean age 61.3 years
- 37.3% previous LEA
- No statistically significant differences in age, race, ethnicity
- 62.7% diagnosed with PAOD

Level of Foot Amputation

<table>
<thead>
<tr>
<th>Level</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Ray</td>
<td>28%</td>
</tr>
<tr>
<td>2nd Ray</td>
<td>14%</td>
</tr>
<tr>
<td>3rd Ray</td>
<td>10%</td>
</tr>
<tr>
<td>4th Ray</td>
<td>9%</td>
</tr>
<tr>
<td>5th Ray</td>
<td>14%</td>
</tr>
<tr>
<td>Multiple</td>
<td>6%</td>
</tr>
</tbody>
</table>
PARTIAL RAY AMPUTATIONS
CAUSATIVE FACTORS

- Ulceration / Infection
 - Neuropathy
 - Increased Plantar Pressure
 - Prolonged Activity
 - Foot Deformity
- Gangrene
- Failed toe amputation
- Chronic ulceration / tissue loss
- Trauma
- Intolerable pain
- Malignancy
PARTIAL RAY AMPUTATIONS
SURGICAL MANAGEMENT

Biologic Amputation Level

The most distal functional amputation level with a reasonable (85% - 90%) potential to support wound healing

- Vascular inflow
 - ABI
- Tissue Nutrition
 - TcPO2
 - Pre-albumin
 - Protein
 - Immuno-competence
 - TLC
- incision planning
- no purulence
- open vs. closure
- marginal tissue

Pinzur, MS et al, “Amputation Level Selection in the Diabetic Foot” Clin Ortho Rel Research, 1993
PARTIAL RAY AMPUTATIONS
TECHNIQUE

- Dorsal incision over metatarsal shaft
- Racquet around digit
- Plantar ulceration ellipse
- Transect metatarsal 45 degree bevel
- Examination of all tissue planes
- Extensive irrigation
- Primary vs. delayed closure
- Closure with mattress sutures
Hypertrophic Bone Re-growth

- Increase risk of re-ulceration / re-amputation
- 92 patients isolated ray resections
- Repeat radiographs at mean 22 months
- Hypertrophic Bone >3mm
- 41 patients (45%) had hypertrophic bone formation
- Significant factors associated with re-growth:
 - Male gender
 - Manual bone cutting instruments
 - Resection distal to the surgical neck
- Re-growth of bone 8x more likely to re-ulcerate at amp site

PARTIAL RAY AMPUTATIONS
INCIDENCE AND SURVIVAL

- 277 patients retrospectively reviewed first LE amputation between 1993 – 1997
- Re-amputation episodes recorded through 2003
- Toe, Ray, Mid-foot, Major Amputation levels

Data for Ray Resections
n = 114 (41%)
81 males (71.1%)
95 Hispanic (83.3%)
Age 52.4 yrs
PAD 34 pts (29.8 %)
ESRD 4 pts (3.5%)
27 revasc. (23.7%)
59 smokers (51.7%)
29 Deceased (25.4%)
Average f/u 5.4 yrs

PARTIAL RAY AMPUTATIONS
INCIDENCE AND SURVIVAL

Rates of Re-amputation for Partial Ray Resections

<table>
<thead>
<tr>
<th></th>
<th>Ipsilateral</th>
<th>Contralateral</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
<td>28.7%</td>
<td>9.3%</td>
</tr>
<tr>
<td>3 years</td>
<td>41.2%</td>
<td>21.6%</td>
</tr>
<tr>
<td>5 years</td>
<td>50%</td>
<td>29.2%</td>
</tr>
</tbody>
</table>
PARTIAL RAY AMPUTATIONS INCIDENCE AND SURVIVAL

- **53 Diabetic Miami VA veterans**
- **Success rate @ average 22.3 months**
 - 93% TMAs
 - 86% pan-metatarsal head resection
 - 37% partial ray resection

<table>
<thead>
<tr>
<th>Ray Resection</th>
<th>Total</th>
<th>Success</th>
<th>Failure</th>
<th>%Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>11</td>
<td>4</td>
<td>7</td>
<td>36.4</td>
</tr>
<tr>
<td>2nd</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>14.3</td>
</tr>
<tr>
<td>3rd</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>16.8</td>
</tr>
<tr>
<td>4th</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5th</td>
<td>9</td>
<td>7</td>
<td>2</td>
<td>77.8</td>
</tr>
<tr>
<td>total number</td>
<td>35</td>
<td>13</td>
<td>22</td>
<td>37.1</td>
</tr>
</tbody>
</table>

PARTIAL RAY AMPUTATIONS INCIDENCE AND SURVIVAL

- 85 patients reviewed
- 1993 – 1995
- 64 (75%) male
- Avg age 53.7 years
- Avg follow-up 33 mos
- Avg dur of DM 14.3 years
- 82 (96%) Type 2 DM
- 82 % Hispanic

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Percent</th>
<th>Success</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Ray</td>
<td>31</td>
<td>36.5</td>
<td>18</td>
<td>58</td>
</tr>
<tr>
<td>2nd Ray</td>
<td>7</td>
<td>8.2</td>
<td>3</td>
<td>43</td>
</tr>
<tr>
<td>3rd Ray</td>
<td>7</td>
<td>8.2</td>
<td>6</td>
<td>86</td>
</tr>
<tr>
<td>4th Ray</td>
<td>10</td>
<td>11.8</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>5th Ray</td>
<td>20</td>
<td>23.5</td>
<td>14</td>
<td>70</td>
</tr>
<tr>
<td>Multiple</td>
<td>10</td>
<td>11.8</td>
<td>5</td>
<td>50</td>
</tr>
</tbody>
</table>

Diagnosis at Initial Amputation

Osteomyelitis 49 (57.6%) Soft Tissue Infection 22 (25.9%) Critical Ischemia 14 (16.5%)

Reyzelman, et al, *Unpublished*
PARTIAL RAY AMPUTATIONS
INCIDENCE AND SURVIVAL

<table>
<thead>
<tr>
<th>Type</th>
<th>Count (Percentage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same level</td>
<td>50 (58.8%)</td>
</tr>
<tr>
<td>More Proximal</td>
<td>35 (41.2%)</td>
</tr>
<tr>
<td>TMA/Chopart</td>
<td>22 (62.8%)</td>
</tr>
<tr>
<td>BKA/AKA</td>
<td>13 (37.2%)</td>
</tr>
</tbody>
</table>

Diag at Subsequent Amp

- **Infection**: 17 (48.6%)
- **Infection w/ Ischemia**: 17 (48.6%)
- **Inadequate skin coverage**: 1 (2.9%)

Revascularization

- 16 patients (18.8%)
 - Underwent peri-operative distal LE revascularization
 - 11/16 revasc. *PRE-amp*
 - 19% went on to major amputation
 - 5/16 revasc. *POST-amp*
 - 100% went on to major amputation
- 13/13 (100%) of patients that progress to major amputation – ISCHEMIA
 - 11x increase chance of proximal amputation

Reyzelman, et al, Unpublished
5 studies -- 435 Patients underwent 1st ray amputations

- Mean f/u 26 months
- Mean Age 59
- 19.8% re-amputation rate
 - 37.2% Additional digit
 - 32.6% TMA
 - 29.1% BKA
 - 1.2% Lisfranc

Conclusion: One out of every 5 patients undergoing a partial first ray amputation subsequently require a more proximal amputation to achieve a durable, weight bearing residual extremity.

Retrospective review
59 Patients underwent 1st Ray amputations
- Mean f/u 33.8 months
- Mean Age 67
- 47.5% Mortality at mean 34.6 months
- 69% develop a foot ulcer mean 10.5 months
 - Prolonged clinic visits
 - Multiple antibiotic prescriptions
 - Ancillary surgical procedures
- 42.4% re-amputation rate at mean 25 months
 - 36% BKA
 - 24% TMA
 - 16% additional digit
 - 8% midshaft first metatarsal
 - 8% 1st MPJ
 - 4% AKA
 - 4% Chopart

Conclusion: “We believe the partial first ray level of amputation is neither reliable nor durable.”

PARTIAL RAY AMPUTATIONS
BIOMECHANICS

- Loss of medial column integrity
- Medial arch collapse
- Adjacent toes attempt to supply stabilization
- Development of digital contractures
- Plantar prominences of the metatarsal heads due to retrograde buckling and displacement of the fat pad
PARTIAL RAY AMPUTATIONS
BIOMECHANICS

- 11 NIDDM patients unilateral partial 1st ray amputations >6 months
- F-scan measurements
- Risk Factors are unchanged

<table>
<thead>
<tr>
<th>Peak Pressure (g/cm²)</th>
<th>Great Toe Amp</th>
<th>No foot Amp</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Met</td>
<td>6,329 +/- 4,658</td>
<td>4,611 +/- 2,511</td>
</tr>
<tr>
<td>Lesser Mets</td>
<td>8,267 +/- 3,909</td>
<td>4,935 +/- 2,557</td>
</tr>
<tr>
<td>Lesser Toes</td>
<td>3,666 +/- 2,704</td>
<td>1,701 +/- 1,229</td>
</tr>
<tr>
<td>Heel</td>
<td>3,604 +/- 1,424</td>
<td>4,323 +/- 1,782</td>
</tr>
</tbody>
</table>

Lavery LA et al, “Increased Foot Pressures After Great Toe Amputation in Diabetes” Diabetes Care 1995
PARTIAL RAY AMPUTATIONS
DISTAL AMPUTATION VALUE

- Lower rate of mortality
 - 5% vs. 21% 1 year
- Lower rate of new major amputation
- Higher rehabilitation potential
 - 70% vs. 19% walk 1km
 - 93% vs. 61% return home
 - 40% regular use of prosthesis

Conclusion:
Despite a longer healing time (29 vs. 8 weeks) and high re-amputation rates, long term results are more favorable with minor vs. major amputations

NATURAL HISTORY OF PARTIAL RAY AMPUTATIONS

CONCLUSIONS

Pre-Op
- ABI
- TcPO2
- Serum Albumin > 3.0 g/dl
- Serum Protein level >6.0g/dl
- Total Lymphocyte Ct >1500ml
- Rehabilitation Potential

Intra-op
- Incision planning
- Meticulous handling of skin and soft tissue
- Power Instrumentation
- Adequate debridement
- Closure without tension

Post-op
- Compliance with wound care and offloading
- Careful discharge planning
- Identification of High Risk Patients
- Multispecialty High Risk Foot Clinics

Preventive
- Intense Education / Proper Foot Care
- Promotion of early health-care seeking behaviors
- Blood Glucose Control
- Shoegear
- Adjunct Procedures